Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts, and Concept Rehearsal **E. Marconato**^{1,2} G. Bontempo^{2,3} E. Ficarra³ S. Calderara³ A. Passerini¹ S. Teso¹

²University of Pisa

1. Neuro-Symbolic Reasoning

K

pick(red cube)

- **1** The labels \mathbf{Y} depend on *concepts* \mathbf{C} , in accordance to knowledge K
- **2** Concepts C are learned *input* \mathbf{X} , via neural networks.
- NeSy predictors are static.

¹University of Trento

2. Continual Learning

- **1** Learning is divided in **tasks**
- **2** *Fine-tuning* the models leads to **Catastrophic Forgetting**;
- **CL Strategies** make use of *memory* and/or regularization to prevent it.

³University of Modena-Reggio Emilia

No method makes use of *prior* knowledge.

3. Neuro-Symbolic Continual Learning

We introduce **Neuro-Symbolic Continual Learning** (NeSy-CL), a new machine learning problem, where the machine has to:

- **1.** Learn over a sequence of NeSy tasks;
- **2.** Acquire high-quality concepts, avoiding reasoning shortcuts;
- **3. Preserve** the knowledge on the concepts and labels.

4. Problem Statement

We denote input $\mathbf{x} \in \mathbb{R}^d$, concepts $\mathbf{c} \in \mathbb{N}^k$, labels $\mathbf{y} \in \mathbb{N}^n$, and prior knowledge K. Data are distributed according to:

 $p^{(t)}(\mathbf{X}, \mathbf{C}, \mathbf{Y}; \mathsf{K}^{(t)}) := p^{(t)}(\mathbf{Y} \mid \mathbf{C}; \mathsf{K}^{(t)}) \cdot p(\mathbf{C} \mid \mathbf{X}) \cdot p^{(t)}(\mathbf{X})$

Example: MNIST-Addition consists of sums between digits, i.e. $\mathbf{0} + \mathbf{1} = 1$. We extend it to a **class/concept-incremental** NeSy-CL **benchmark**.

7. COOL: a new strategy for Continual Learning

We prove (**Theorem 4.1**) that in NeSy-CL we must **remember the learnt concept distribution**. COOL optimizes for this:

$$\mathcal{L}_{\text{COOL}} := \frac{1}{N_{mb}} \sum_{(\mathbf{x}, \tilde{\mathbf{q}}_{c}, \mathbf{y}) \in \mathcal{M}} \left[\alpha \cdot \mathsf{KL} \left(p_{\theta}(\mathbf{C} \mid \mathbf{x}) \parallel \tilde{\mathbf{q}}_{c} \right) - \beta \cdot \log p_{\theta}(\mathbf{Y} = \mathbf{y} \mid \mathbf{x}; \mathsf{K}^{(t)}) \right]$$

5. Reasoning with DeepProbLog

DeepProbLog = probabilistic logic programming + neural predicates:

$$p_{\theta}(y|\mathbf{x};\mathbf{K}) = \sum_{\mathbf{c}} u_{\mathbf{K}}(y|\mathbf{c}) \cdot p_{\theta}(\mathbf{c}|\mathbf{x})$$
$$u_{\mathbf{K}}(y|\mathbf{c}) = \frac{1}{Z(\mathbf{c};\mathbf{K})} \cdot \mathbb{1}\{(\mathbf{c},\mathbf{y}) \models \mathbf{K}\}$$

For each task, we learn the parameters θ via **maximum likelihood**.

8. Experimental Verification

New NeSy-CL benchmarks:

1) MNAdd-Seq

CLE4EVR

2) <u>MNAdd-Shortcut</u>*

3) $CLE4EVR^*$ from CLEVR

Q1: Knowledge helps

We compare different strategies paired to Concept Bottleneck Models and DeepProbLog

	CLE4EVR	benchmark
TASK	Colors	Shapes
1	red, gray	sphere, cube
2	green, blue	cylinder, tetrahedron
3	brown, purple	cone, triangular prism
4	yellow, cyan	pyramid, toroid
5	orange, pink	diamond, star prism

 $\mathbf{Y} \in \{$ same color, same shape, both, neither $\}$

	STRATEGY	CLASS-IL $\mathbf{Y}(\uparrow)$	CLASS-IL $\mathbf{C}\left(\uparrow ight)$	$FWT(\uparrow)$
%	NAÏVE	11.71 ± 0.8	36.2 ± 2.6	7.5 ± 0.3
	RESTART	10.78 ± 0.1	29.7 ± 0.1	7.3 ± 0.2
E0	LWF	18.08 ± 1.8	63.2 ± 4.4	-4.7 ± 1.1
(3)	EWC	11.57 ± 0.6	37.4 ± 0.6	7.6 ± 0.4
S.	ER	13.29 ± 0.4	43.5 ± 2.0	13.4 ± 1.6
B	DER	18.63 ± 2.5	53.1 ± 1.7	15.7 ± 0.9
0	DER++	18.17 ± 1.6	54.1 ± 3.0	16.6 ± 1.8
	COOL	38.0 ± 1.9	78.1 ± 2.5	29.0 ± 4.8
	NAÏVE	6.9 ± 0.2	6.7 ± 0.4	6.2 ± 0.2
0	RESTART	9.6 ± 0.3	0.2 ± 0.1	6.9 ± 0.8
ĭ	LWF	6.8 ± 0.5	10.8 ± 4.6	18.3 ± 0.2
B	EWC	6.8 ± 0.4	7.8 ± 0.6	6.1 ± 0.3
E.	ER	44.3 ± 9.7	62.0 ± 8.6	8.2 ± 4.1
Ē.	DER	68.3 ± 9.4	81.3 ± 6.9	44.5 ± 23.7
Ā	DER++	62.2 ± 5.4	77.1 ± 4.2	27.1 ± 5.2
	COOL	71.9 ± 2.9	84.5 ± 1.9	83.2 ± 0.9

▶ emanuele.marconato@unitn.it

Q2: Addressing Reasoning Shortcuts

We show that **supervising concepts** + **replay strategies** is not enough. Only COOL avoids reasoning shortcuts

> CLASS-IL (C)CLASS-IL (\mathbf{Y}) OOD ACCURACY (\mathbf{Y})

6. NeSy predictors fall prey of Reasoning Shortcuts

A **Reasoning Shortcut** is an optimal solution with **incorrect concepts**.

Theorem (3.2): A model with parameters θ attains maximal likelihood, i.e. $\theta \in \Theta^*(\mathsf{K}, \mathcal{D})$, if and only if, for all $(\mathbf{x}, \mathbf{y}) \in \mathcal{D}$, it holds that $p_{\theta}(\mathbf{C} \mid \mathbf{x}) \models \mathsf{K}[\mathbf{Y}/\mathbf{y}]$.

Example: Consider MNIST-Addition with only $\mathbf{0} + \mathbf{1} = 1$ and $\mathbf{0} + \mathbf{2} = 2$. Then: $0 \rightarrow 0, \ 1 \rightarrow 1, \ 2 \rightarrow 2$ $0 \rightarrow 1, \ I \rightarrow 0, \ Z \rightarrow 1$

are two **optimal solutions**.

Mitigation with **concept supervision**. **Q3**: We show that only few is sufficient!

Oema_marconato

ICT Days, Trento, Italy

