User-Aware Algorithmic Recourse with Preference Elicitation

<u>Giovanni De Toni^{1,2}, Paolo Viappiani³, Bruno Lepri¹, Andrea Passerini²</u>

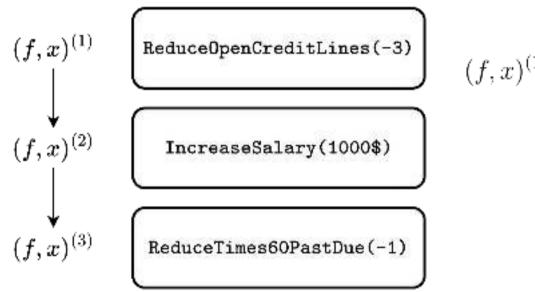
¹Fondazione Bruno Kessler (FBK), Italy ² DISI, University of Trento, Italy ³ CNRS and University Paris Dauphine, France

Motivation

Automated black-box decision-making models are becoming increasingly pervasive in our society, but we cannot still understand or act on their recommendations. For example, if a machine learning model denies me a loan, it is impossible for me to challenge its decision. Counterfactual interventions are a powerful tool which can explain black-box model decisions and enable algorithmic recourse. However, current methods provide interventions without considering the user's preferences. We propose the first human-in-the-loop approach to perform algorithmic recourse by modelling and including users in the optimization process, following the preference elicitation theory. An experimental evaluation of synthetic and real-world datasets shows that a handful of queries allows for achieving a substantial reduction in the cost of interventions with respect to user-independent alternatives.

What is Algorithmic Recourse?

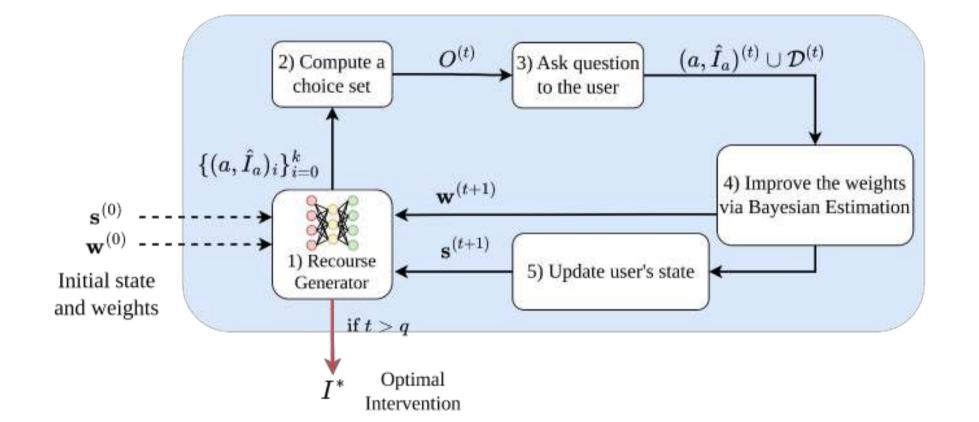
Algorithmic Recourse is the ability to provide "*explanations and recommendations to individuals who are unfavourably treated by automated decision-making systems*" via **counterfactual interventions.** It implements the *"right to an explanation"* defined by Article 22 of the GDPR.



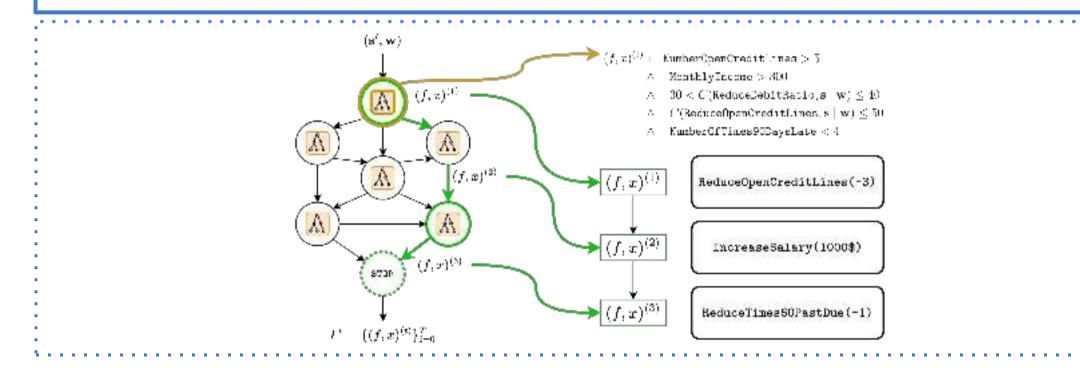
- $(f, x)^{(1)} \leftarrow \texttt{NumberOpenCreditLines} > 5$
 - \wedge MonthlyIncome > 300
 - $\wedge \quad 30 < C(\texttt{ReduceDebitRatio}, \mathbf{s} \mid \mathbf{w}) \leq 40$
 - $\wedge \quad C(\texttt{ReduceOpenCreditLines}, \mathbf{s} \mid \mathbf{w}) \leq 50$
 - \wedge NumberOfTimes90DaysLate < 4

a) Counterfactual intervention (left) and associated explanations (right)

How do we measure the recourse cost?



User-Aware Explainable Interventions (W-EFARE)



$$\begin{array}{c} w_{1} & w_{12} & w_{23} \\ w_{13} & w_{23} \\ w_{3} \\ w_{3} \end{array} \\ \end{array} \\ \begin{array}{c} C(a_{1}, \mathbf{s} | \mathbf{w}) = w_{1}(s_{1}' - s_{1}) \\ C(a_{2}, \mathbf{s} | \mathbf{w}) = w_{12}s_{1} + w_{2}(s_{2}' - s_{2}) \\ C(a_{3}, \mathbf{s} | \mathbf{w}) = w_{13}s_{1} + w_{23}s_{2} + w_{3}(s_{3}' - s_{3}) \end{array} \\ \begin{array}{c} C(I | \mathbf{w}) = \sum_{l=0}^{T} C(a^{(t)}, \mathbf{s}^{(t)} | \mathbf{w}) \\ Total \ cost \ of \ an \ intervention \\ given \ the \ user \ preferences. \end{array}$$

In the real world, features are causally related. We use a **Structural Causal Model** (SCM) to model the **(linear) dependencies** between features and the cost of an action given the user preferences.

How do we ask the right questions?

$$\operatorname{EUS}_{L}(O^{(t)}|\mathcal{D}^{(t)}) = -\int_{\mathbf{w}} \left[\sum_{a,\hat{I}_{a} \in O^{(t)}} P_{L}(O^{(t)} \rightsquigarrow a | \mathbf{w}) C(\hat{I}_{a} | \mathbf{w}) \right] P(\mathbf{w} | \mathcal{D}^{(t)}) \, d\mathbf{w}$$

The **Expected Utility of Selection (EUS)** gives the maximally informative choice set that maximises the user's expected utility (minimizing the intervention costs). We model the user response model $P_L(O^{(l)} \rightsquigarrow a | \mathbf{w})$ as **noiseless** or **logistic (Bradley-Terry)**.

How do we discover a successful intervention?

 $\underset{I=(a_1,\ldots,a_k), k \le k_{\max}}{\operatorname{argmin}} C(I, \mathbf{s} | \mathbf{w}) \quad \text{s.t.} \quad p(h(\mathbf{s}') = 1 \mid \mathbf{s}' = I(\mathbf{s})) \ge \tau$

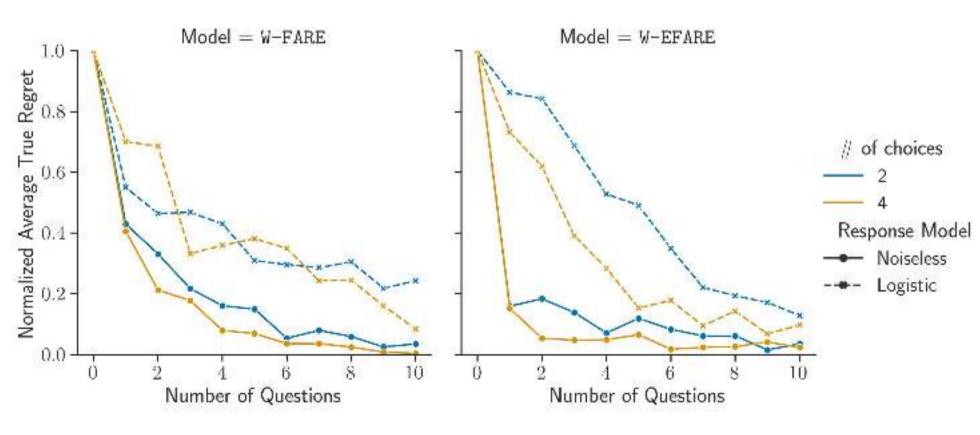
Given a binary black-box classifier *h*, we want to find the intervention with the **minimum cost**, which maximizes the probability of achieving a positive classification (e.g., you will get the loan).

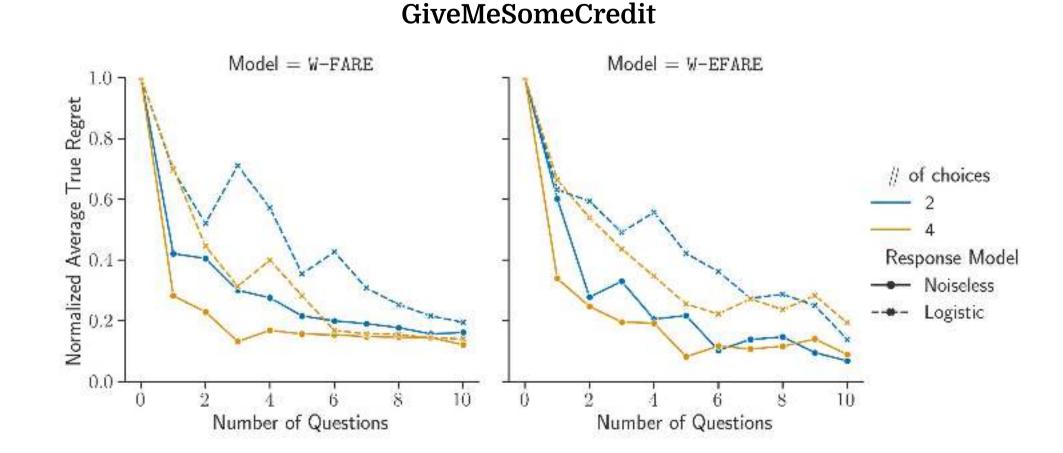
Experiments

Table 1. (Normalized) Average True Regret Improvement (1 - R(I|W)) when we ask q = 1 and q = 10 questions under all the response models and choice set sizes. With the minimal choice set (k = 2) and q = 1, we can provide interventions that are, on average, ~ 40% cheaper than the baseline. In **bold**, we have the best result for each model.

(a) synthetic						(b) GiveMeSomeCredit						(c) Adult					
Model	Noise	$ O^{(t)} = 2$		$ O^{(t)} = 4$			Noise	$ O^{(t)} = 2$		$ O^{(t)} = 4$			Notes	$ O^{(t)} = 2$		$ O^{(t)} = 4$	
		q = 1	<i>q</i> = 10	q = 1	q = 10	Model	Noise	q = 1	q = 10	q = 1	q = 10	Model	Noise	q = 1	<i>q</i> = 10	q = 1	<i>q</i> = 10
W-FARE	R_L	0.33	0.75	0.36	0.83	W FADE	R_L	0.30	0.80	0.30	0.86	W-FARE	R_L	0.45	0.75	0.30	0.92
	R_{NL}	0.38	0.79	0.51	0.83	W-FARE	R_{NL}	0.58	0.84	0.71	0.88		R_{NL}	0.57	0.96	0.59	1.00
W-EFARE	R_L	0.22	0.59	0.34	0.72	W FEADE	R_L	0.37	0.86	0.34	0.80	W-EFARE	R_L	0.14	0.87	0.26	0.90
	R _{NL}	0.37	0.70	0.55	0.73	W-EFARE RNL		0.40	0.93	0.66	0.91		R _{NL}	0.84	0.96	0.85	0.98

Adult Income





License

This work is released under the **Creative Commons Attribution-ShareAlike 4.0** International (CC BY-SA 4.0) license - <u>http://bit.ly/cc-by-sa-40</u>

Acknowledgements

This research was partially supported by TAILOR, a project funded by the EU Horizon 2020 research and innovation programme under GA No 952215 and partially supported by the project AI@Trento (FBK-Unitn).