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Motivation
Decision Black-Box ‘ What is Algorithmic Recourse? ‘
User
Maker Model T T
O . Algorithmic Recourse is the ability to provide “explanations and recommendations to -
‘Y‘ & .w,g, O, - individuals who are unfavourably treated by automated decision-making systems” via :
-i>/0’0/. - counterfactual interventions. It implements the "right to an explanation"” defined by
N .
h (x) £ ok E_L! ; h(x) O :Artlcle 22 of the GDPR.
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Automated black-box decision-making models are becoming increasingly pervasive (f, )M ReduceOpenCreditLines (-3)
in our society, but we cannot still understand or act on their recommendations. For L. ) (S, 2} < NumberOpenCreditLines > 5
example, if a machine learning model denies me a loan, it is impossible for me to l - " A MonthlyIncome > 300
challe.enge its decision. Cour}tgrfactual 1ntervent10r}s are a powerful tool which can (f,2)® Tecreusamlas Rioooks A 30 < C(ReduceDebitRatio, s | w) < 40
explain black-box model decisions and enable algorithmic recourse. However, current | ) ) o i
methods provide interventions without considering the user’s preferences. We l A C(ReduceOpenCreditLines,s | w) < 50
propose the first human-in-the-loop approach to perform algorithmic recourse by ) @ ) A NumberOfTimes90DaysLate < 4
modelling and including users in the optimization process, following the preference (fy)™ ReduceTimes60PastDue (1)
elicitation theory. An experimental evaluation of synthetic and real-world datasets \ .

shows that a handful of queries allows for achieving a substantial reduction in the cost
of interventions with respect to user-independent alternatives.

Human-in-the-loop Algorithmic Recourse (WFARE)

a) Counterfactual intervention (left) and associated explanations (right)
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wl amemmeaa- 1) Recourse g(t+l) ( k In the real world, features are causally related. We use a Structural Causal Model (SCM) to model the (linear)
Initial state So— L 5) Update user's state dependencies between features and the cost of an action given the user preferences.
and weights . . X
ift>q How do we ask the right questions?
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User-Aware Explainable Interventions (W-EFARE)
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The Expected Utility of Selection (EUS) gives the maximally informative choice set that maximises the user’s
expected utility (minimizing the intervention costs). We model the user response model F; {O"' ~~ a|w)as
noiseless or logistic (Bradley-Terry).

How do we discover a successful intervention?
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ReduceTineas0Pastiue (-1} Given a binary black-box classifier h, we want to find the intervention with the minimum cost, which
\ .

maximizes the probability of achieving a positive classification (e.g., you will get the loan).

Table 1. (Normalized) Average True Regret Improvement (1 — R(TI|W)) when we ask g = 1 and g = 10 questions under all the response
models and choice set sizes. With the minimal choice set (k = 2) and ¢ = 1, we can provide interventions that are, on average, ~ 40%
cheaper than the baseline. In bold, we have the best result for each model.
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