

UNIVERSITÀ **DI TRENTO**

Introduction

We devise a graph summary method to tackle the The proposed method is divided into three main steps: Influence Maximisation (IM) problem on social net-Downscaling; works. Starting from a graph G = (V, E), where V 2. Multi-objective Evolutionary Algorithm (MOEA); is the set of nodes and E is the set of edges in G, 3. Upscaling. IM is the problem of finding a seed set S s.t $|S| \leq k$ that maximise the *influence* propagation over G, given **Network** a certain propagation model. The used propagation models are:

- Independent Cascade (IC): probability p is equal across all links, and is fixed;
- Weighted Cascade (WC): *p* is inversely proportional to the number of links for each node $m \in V$, i.e., $p = \frac{1}{deg(m)}$

Downscaling

- preserves the number of communities in the network;
- downscales the number of nodes and edges by a scale factor s;
- preserves the node degree distribution.

is proportional $d^{-\alpha}$ where $\alpha > 0$.

Paper

Code:

Large-scale multi-objective influence maximisation with network downscaling

Elia Cunegatti ^{1,2}

Giovanni lacca¹ Doina Bucur²

Method

Figure 1. Original and Upscaled (PageRank) PFs for Fb. Pag.

¹University of Trento - ²University of Twente

This step takes in input two graphs G (unscaled) and G_s (downscaled) and a set seed on G_s , denoted as S_s . The task is to translate S_s into a seed set S on G. We find a matching seed set S of $|S_s| \times s$ nodes in G. We do this per community. Each node in S_s has a rank in its community, based on the centrality values of all nodes in that community.

MO

degr closene betweenne eigenvec page ra C

the *s* is doubled.

UNIVERSITY OF TWENTE.

Upscaling

Fb. Pag downscaling							
EA	1.1	1	0.79	1.1	1.1	0.99	
upscaling							
ree	0.98	0.96	0.92	0.95	0.94	0.9	- 1.0
ess	0.96	0.95	0.91	0.87	0.86	0.83	- 0.8
ess	0.99	0.97	0.93	0.95	0.94	0.91	- 0.6
tor	0.96	0.95	0.91	0.73	0.73	0.71	- 0.4
atz	0.96	0.95	0.92	0.64	0.62	0.6	- 0.2
ank	1	0.98	0.93	0.97	0.96	0.92	- 0.0
ore	0.96	0.95	0.92	0.56	0.5	0.31	0.0
	2	=4	С П	2	=4	00 	
	Š	Š	Š	Š	Š	Ś	
	\underline{O}	\underline{O}	\underline{O}	MC	MC	NC NC	

Runtime

Runtime decreases by a factor from 2x to 5x when

Conclusion

• α preserved in the downscaling; PageRank best centrality for upscaling; • Hypearea in [0.78, 1] for $s \in [2, 4, 8]$; • **Diversity** in the solutions due to the MOEA; Runtime massively decreased.